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Abstract. In the initial stages of back-propagation learning, weights in the first synaptic layer are
small and hidden neurons operate in the linear regime; so the input–output map is then the same as
that of a perceptron. As the weights increase, the hidden neurons begin to saturate; each saturation
pattern represents a particular category of input vectors, for which the neural network (NN) locally
behaves as a perceptron. The effective perceptron weights for each category are functions of the
synaptic weights of the NN. We define an internal temperature as the inverse of the norm of the first
synaptic matrix, and an entropy function that measures the disorder of the hidden-neuron layer. The
learning curves are recast in the language of a condensation process. The entropy drops abruptly
when the hidden neurons begin to saturate, marking a clear transition from the global perceptron
state to an ordered state characterized by different local effective perceptrons in different categories.
The problem of optimizing the effective perceptrons in different categories is frustrated.

1. Introduction

Since the successful development and implementation of replica symmetry techniques
in recurrent neural networks (NN) for calculating a partition function [1], and also the
implementation of central limit theorems [2], researchers have extended the thermodynamical
formalism to the perceptron [3] and further to multilayer feed-forward neural networks
(FNN) [4–6]. Interesting features, such as the plateau-like curves which one observes in
the standard FNN learning by back-propagation, have been predicted [5].

The back-propagation algorithm for FNN has been widely and successfully used since its
development [7]. Even though it is a gradient algorithm that can be fooled by local minima,
its convergence is very quick and it is easy to program. Recently, the number of patterns
that can be stored per weight have been calculated by statistical mechanics techniques for the
fully connected committee machine [6]. However, until now there is no generally accepted
prescription that one can follow in order to choose an architecture or avoid problems such as
over-learning or getting trapped in local minima. Statistical mechanics techniques are very
powerful and allow us to analyse the problems in a broad way, even though its range of validity
is restricted to the thermodynamical limit, when the number of neurons in the input layer
N1 → ∞. In this paper we study the problem of learning from a numerical perspective, and
try to understand the different stages of learning and the type of input–output map that the NN
produces in each stage.
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Our aim in this paper is to study a three-layer FNN with N1 in the input layer, N2 in
the hidden layer and 1 in the output layer, and focus our attention on the state of saturation
of the hidden neurons, considering three different regimes for their activity: saturation to 0,
saturation to 1, and a linear regime for small values of the activation potential. A key point is
that there are classes of input vectors that leave the hidden neurons in a given state of saturation.
These classes can be labelled by symbolic arrays giving a symbol in {0, 1, ∗} for each hidden
neuron: for example, in a FNN with four hidden neurons (0, 0, 1, ∗) is the category of input
vectors that saturate the first two hidden neurons to zero, the third to one, and leaves the fourth
in a linear regime. The different input vectors in such a category might be very different (for
example, from the point of view of the Euclidean norm in input space), but they are treated in
a similar way by the neural network: the same hidden neurons saturate to 0, to 1, or not at all.
Hidden neurons that saturate to 0 or 1 do not propagate small fluctuations in the inputs: they
are effectively deactivated and can be replaced by a constant value. On the other hand, neurons
that are operating in the linear regime will propagate the signal forward with a weight equal
to the product of weights from the first and second synaptic layers. This leads to a picture of
the FNN as a set of perceptrons, one for each category of inputs.

The categorization of input vectors by means of the hidden neuron activation patterns
depends on the first synaptic matrix and therefore it evolves as one proceeds along the learning
curve. The number of categories occupied with data vectors grows during the learning process.
At advanced stages the number of categories becomes large and it is no longer possible to
think of the learning process as separate processes taking place in each category, where the
effective perceptron weights in that category get optimized independently. Instead, the task
of optimizing effective perceptrons in the different categories becomes frustrated: improving
the input–output map for one category of inputs reduces its performance for another category.
This frustration effect has important consequences: for example, local minima would not exist
without a frustrated learning problem.

In this paper we will make these arguments more concrete, and through this, offer an
inside view of how the FNN operates at different stages of its learning curve, and how the
back-propagation algorithm pushes the FNN along from one stage to the next.

In the following section we describe the architecture of the NN and describe the back-
propagation algorithm, in section 3 the data set used for the training of the NN is presented.
In section 4 we present the process of categorization by saturation of the hidden neurons and
in section 5 we address the conclusions.

2. The back-propagation algorithm

We will consider a three-layer FNN with sigmoidal transfer functions, with N1 inputs and N2

hidden neurons, and no thresholds [7]:

y(xα) = g

( N2∑
j=1

W
(2)
j x

(2)

j (α)

)
(2.1)

x
(2)

j (α) = g

( N1∑
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W
(1)
j i xα

i

)
(2.2)

g(x) = 1

1 + e−x
(2.3)

where xα
i and x

(2)

j (α) are the αth input vectors on the ith input neuron and j th hidden neuron,
respectively (α = 1, . . . , P with P being the number of training vectors), and y(xα) is the
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neural output. It is customary to insert a factor β in the argument of the exponential in the
transfer function (2.3); however, this factor can be absorbed in the synaptic weights W

(1)
j i

and W
(2)
j .

The back-propagation algorithm is a steepest-descent minimization algorithm on the
quadratic difference between the neural outputs y(xα) and the known correct outputs yα:

ε = 1

P

P∑
α=1

(y(xα) − yα)2. (2.4)

Calculating the gradient of this error function with respect to the synaptic weights leads to the
usual iterative algorithm for back-propagation, η being the learning rate:

W
(2)
j → W

(2)
j − η(y(xα) − yα)y(xα)(1 − y(xα))x

(2)

j (α) (2.5)

W
(1)
j i → W

(1)
j i − η(y(xα) − yα)y(xα)(1 − y(xα))W

(2)
j x

(2)

j (α)(1 − x
(2)

j (α))x
α
i . (2.6)

The training vectors (α) are presented in random order, one at a time and updating the
synaptic weights at each step.

3. The dataset used

In order to address issues that are relevant in real-life applications of NN, we will use a time
series forecasting problem that is sufficiently complex that one does not expect to achieve
a very close fit to data, and yet is completely deterministic. A model that fits this picture
is that which Lorenz introduced in 1991 to consider the applicability of phenomenological
approaches to estimating the attractor dimension for systems which consist of a large number
of weakly coupled chaotic subsystems: the model consists of seven weakly coupled copies
of the classical Lorenz equations, i.e. 21 first-order differential equations for 21 variables [8].
We integrated this system using a fourth-order Runge–Kutta method, using the first minimum
of mutual information for the first variable in Lorenz’s system to set the sampling time and
running the integrator until we have 4000 consecutive snapshots of this first variable.

4. Cooling curve

We will use a particular run to describe the whole process of learning: however, it is completely
representative of the situation under study. With η = 0.01, we ran a back-propagation
algorithm on a N1 = 24, N2 = 16 neural network with a small training data set of 976
training vectors, each one consisting of 24 consecutive values of the first variable in Lorenz’s
system. The remaining 3000 data vectors were saved for testing. The initial synaptic matrix
was randomly generated with a uniform probability in the range [−0.05, 0.05] for the second
layer, and [−0.0001, 0.0001] for the first synaptic layer. The learning curve on training and
testing data are reproduced in figure 1(a): having taken a small training dataset, the over-
learning phenomenon is particularly acute. Our purpose here, however, is to analyse the
evolution of the FNN from left to right as it proceeds to learn the data.

The transfer function (2.3) of the hidden neurons can be approximated by a piecewise-
linear function g0(x), the best approximation in terms of absolute error∫ +∞

−∞
|g(x) − g0(x)| dx (4.1)
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Figure 1. (a) The number of iterations of the back-propagation algorithm versus the error (2.4)
is plotted for the training data and the testing data for over 20 000 iterations. (b) The number of
iterations of the back-propagation algorithm versus the error (2.4) for the first 5000 iterations.

being the following:

g0(x) = 0 − ∞ < x � − 5
2 (4.2)

g0(x) = 1
2 + 1

5x − 5
2 < x < 5

2 (4.3)

g0(x) = 1 5
2 � x < ∞. (4.4)

With this approximation, one clearly distinguishes three different operating modes of the
hidden neurons: saturation to zero, a quasi-linear map, and saturation to one. At first, of course,
the synaptic weights being very small, the hidden neurons almost never reach saturation: as
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Figure 2. (a) The number of iterations versus the per cent of saturation of the neurons in the hidden
layer. (b) The number of iterations versus the per cent of saturation for the first 5000 iterations.

the synaptic weights increase following back-propagation, the degree of saturation increases
and the FNN begins to discover nonlinear maps. In figure 2(a) the per cent of saturation of the
neurons is plotted.

We will define the entropy of the hidden layer by analogy to spin systems: assuming that
x

(2)

j (α) represents the mean value of a binary neuron with instantaneous activation values 0 or 1,
for the αth input vector, the statistical entropy of the hidden layer is

S =
P∑

α=1

N2∑
j=1

{x(2)

j (α) log(x
(2)

j (α)) + (1 − x
(2)

j (α)) log(1 − x
(2)

j (α))}. (4.5)

We will also define the network’s internal temperature as the inverse of the 1-norm of the
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Figure 3. The number of iterations versus the entropy (4.5).

matrix W(1):

β = ‖W(1)‖1 = Supx

‖Wx‖1

‖x‖1

where ‖x‖1 = ∑N1
i=1 |xi | is the Manhattan norm of x (this choice of norm is natural here but

similar results follow if one chooses other norms, such as the Euclidean norm, for example).
This matrix norm can be computed as [9]

‖W(1)‖1 = Maxi=1,...,N1

N2∑
j=1

|W(1)
j i |. (4.6)

The entropy and inverse temperature are represented in figures 3 and 4, and in figure 5 the
entropy is represented as a function of β.

As the process of learning goes on, one observes a series of plateaux in the learning curve,
figure 1(a), on which the error remains almost constant. The same phenomenon occurs for
β which controls the categorization process. This behaviour has already been observed by
several authors in the context of statistical mechanics for FNN in on-line learning [5].

The first drop in the prediction error on the training set occurs at iteration number 200, as
the network discovers the best quasi-linear fit to the data; at this stage there is no significant
reduction in entropy as the hidden neurons remain mostly nonsaturated. Up to this point the
FNN can be effectively replaced by a simple perceptron model. If we consider that each hidden
neuron is approximated by the linear transfer function (4.3), then

y(xα) ≈ θ +
N1∑
i=1

W
ef

i xα
i (4.7)

where

W
ef

i = 1
25

N2∑
j=1

W
(2)
j W

(1)
j i θ = 1

2 + 1
10

N2∑
j=1

W
(2)
j .

From 600–1960 iterations the prediction error remains almost constant. Since the number
of effective parameters (N1 + 1) is less than the number of synaptic weights, it is clear that
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Figure 4. The number of iterations versus the inverse of the temperature β, equation (4.6).
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Figure 5. β versus the entropy.

there are many irrelevant directions in the error landscape at this point. One can view the
learning process as a random drift on the horizontal subspace. As the random walk proceeds,
the norm of the synaptic matrix increases as

√
N . Indeed, a log–log regression shows that

β ∼ Na with a = 0.509 ± 0.053 and a correlation of 96.5%. Eventually, at 1960 iterations,
the hidden neurons leave the linear regime (see figure 2(b)). At this point the network ceases
to be equivalent to a single effective perceptron, the flat subspace disappears and the back-
propagation algorithm can find negative gradient directions. This takes the network into a
transition to a new optimum where some hidden neurons saturate. This is shown in figure 1(b)
as a new decrease of the prediction error from 1960–4000 iterations, and in figure 2(b) as a
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rise of the per cent of saturation from 0–4. The transition from the global perceptron regime
to saturated neurons can be observed in figure 5 as an abrupt drop in entropy with relatively
little change in temperature at β ≈ 7.

In the saturating regime the saturation patterns of the hidden neurons provides categorizing
information; each category is defined by a symbolic word (r1, r2, . . . , rN2) with ri ∈ {0, �, 1}
where 0 will denote neurons that are switched off, 1 denotes those that are switched on, and �

denotes those neurons that are operating in the linear regime. For each hidden neuron we can
distinguish two hyperplanes which separate regions of input space that saturate this neuron to
0 or 1, with the equations for the hyperplanes:

N1∑
i=1

W
(1)
j i xα

i = ± 5
2 .

For all input vectors that produce the same hidden neuron activation pattern (or belong to the
same category), the hidden neuron transfer functions can be replaced by the piecewise linear
approximation, leading once again to an effective perceptron, but with the difference that, in
this case, the perceptron we find will only approximate the FNN accurately for those input
vectors in the given category. If we denote by {�} the hidden neurons that operate in the linear
regime and {1} those that saturate to one, the effective map in a given saturation category is a
(local) effective perceptron (4.7) with parameters

W
ef

i = 1
25

∑
j∈{�}

W
(2)
j W

(1)
j i (4.8)

θ = 1
2 + 1

5

∑
j∈{1}

W
(2)
j + 1

10

∑
j∈{�}

W
(2)
j . (4.9)

In this sense, one can view the transition from the quasi-linear to the nonlinear regime of the
neural network as a transition from a global effective perceptron to local effective perceptrons,
one in each hidden neuron saturation category.

From 4000–8000 iterations the prediction error remains once again almost constant,
corresponding to a search in the nonlinear regime to the best local effective perceptrons. The
temperature also stay almost constant while the entropy shows a new drop, corresponding to
more order in the hidden layer of the NN as seen in figure 5. After iteration 8000 the NN uses
this new training to decrease the temperature, the entropy and the prediction error over the
training set, while the per cent of saturation increases. However the over-training also starts at
this point (see figure 1(a)), indicating that further refinement of the phase space into smaller
categories is not relevant.

This refinement of the categorization into a greater number of smaller and smaller
categories comes as a consequence of the growth in the norm of the first synaptic matrix,
and the corresponding increase in the frequency for saturating hidden neurons. The first
refinements are clearly beneficial in the case of nonlinear problems, because they allow one
to replace a global perceptron by several local perceptrons adjusted to different regions of the
input vector space. The point, however, is that what drives the trend towards finer and finer
partitions of the input space is more the random drift along neutral directions of the landscape
than a definite learning gradient; this implies that FNNs continue to increase the hidden neurons
saturation well beyond the point where the optimal input–output map is achieved, and this is
the root of the over-fitting problem.
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5. Conclusion

By introducing the concept of categorization in NN by means of the saturation of the neurons in
the hidden layer, we have provided a tool to look inside the black box of the three-layer FNNs
to understand how they work. The saturation concept of the hidden neurons is introduced by
substituting the nonlinear transfer function (2.3) with a piecewise linear function (4.2)–(4.4),
which is the best approximation in terms of the absolute error (4.1), and saying that a hidden
neuron is saturated if its activation value is in the region of the linear functions (4.2) and (4.4)
while it is nonsaturated if its activation value is in the linear region (4.3). For each category it
is then possible to express the behaviour of the FNN in terms of an effective perceptron (4.7)
with parameters (4.8) and (4.9).

Categorization permits us to study the learning process from the point of view of a cooling
process, which shows abrupt changes in entropy at near constant temperature when the NN
begins to perform categorization in resemblance of the phase transitions in thermodynamical
systems away from equilibrium and in agreement with previous results found for on-line
learning [5]. There are two main drops in entropy with almost constant temperature: one
when the NN changes from a global perceptron and categorization starts, and the other when
the NN is looking for the best local effective perceptron.

The picture of local effective perceptrons can be compared to the Farmer–Sidorowich phase
space reconstruction method, which assumes local linearity in the input-to-output map [10].
It should be an improvement over this latter approach in the case when the first deviation
from linearity is well modelled by the sigmoidal squashing function. Following this stream of
thought, a four-layer hidden neuron can similarly be replaced by a set of effective three-layer
FNNs, one in each category of input vectors. Of course, each one of these three-layer FNNs in
turn will divide its input space in sub-categories. This shows how the addition of new layers to
FNNs is related to a renormalization group type process where the space of input vectors gets
partitioned into cells which then get partitioned into finer cells, etc. Of course, the frustration
problem implies that the effective perceptrons in each cell are not mutually independent and
therefore their effective weights cannot be optimized simultaneously.
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